Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics

Identifieur interne : 001F28 ( Main/Repository ); précédent : 001F27; suivant : 001F29

Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics

Auteurs : RBID : Pascal:12-0241287

Descripteurs français

English descriptors

Abstract

This review article summarizes our research focused on Cu(In1-xGax)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS PV layers are typically made using a high temperature ( > 450 ) process in which Cu, In and Ga are sequentially or co-evaporated and selenized. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 3.1% power conversion efficiency under AM 1.5 solar illumination. Although the device efficiency is too low for commercialization, these devices provide a proof-of-concept that solution-deposited CIGS nanocrystal films can function in PV devices, enabling unconventional device architectures and materials combinations, including the use of flexible, inexpensive and light-weight plastic substrates.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0241287

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics</title>
<author>
<name sortKey="Akhavan, Vahid A" uniqKey="Akhavan V">Vahid A. Akhavan</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Goodfellow, Brian W" uniqKey="Goodfellow B">Brian W. Goodfellow</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Panthani, Matthew G" uniqKey="Panthani M">Matthew G. Panthani</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Steinhagen, Chet" uniqKey="Steinhagen C">Chet Steinhagen</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Taylor B" uniqKey="Harvey T">Taylor B. Harvey</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Stolle, C Jackson" uniqKey="Stolle C">C. Jackson Stolle</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Korgel, Brian A" uniqKey="Korgel B">Brian A. Korgel</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0241287</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0241287 INIST</idno>
<idno type="RBID">Pascal:12-0241287</idno>
<idno type="wicri:Area/Main/Corpus">001C91</idno>
<idno type="wicri:Area/Main/Repository">001F28</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-4596</idno>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active material</term>
<term>Americium</term>
<term>Colloidal crystals</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Frequency conversion</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>High temperature</term>
<term>Illumination</term>
<term>Implementation</term>
<term>Indium selenides</term>
<term>Material processing</term>
<term>Nanocrystal</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Photovoltaic cell</term>
<term>Photovoltaic effects</term>
<term>Precursor</term>
<term>Reviews</term>
<term>Solar cells</term>
<term>Spray coatings</term>
<term>Stoichiometry</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Précurseur</term>
<term>Dispositif photovoltaïque</term>
<term>Effet photovoltaïque</term>
<term>Article synthèse</term>
<term>Synthèse nanomatériau</term>
<term>Implémentation</term>
<term>Matière active</term>
<term>Cellule solaire</term>
<term>Haute température</term>
<term>Gallium</term>
<term>Stoechiométrie</term>
<term>Traitement matériau</term>
<term>Dépôt projection</term>
<term>Conversion fréquence</term>
<term>Cristal colloïdal</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Cuivre</term>
<term>Américium</term>
<term>Eclairement</term>
<term>Couche mince</term>
<term>Nanocristal</term>
<term>Nanomatériau</term>
<term>Substrat cuivre</term>
<term>Substrat plastique</term>
<term>8116</term>
<term>8460J</term>
<term>8115R</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This review article summarizes our research focused on Cu(In
<sub>1</sub>
-
<sub>x</sub>
Ga
<sub>x</sub>
)Se
<sub>2</sub>
(CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS PV layers are typically made using a high temperature ( > 450 ) process in which Cu, In and Ga are sequentially or co-evaporated and selenized. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 3.1% power conversion efficiency under AM 1.5 solar illumination. Although the device efficiency is too low for commercialization, these devices provide a proof-of-concept that solution-deposited CIGS nanocrystal films can function in PV devices, enabling unconventional device architectures and materials combinations, including the use of flexible, inexpensive and light-weight plastic substrates.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4596</s0>
</fA01>
<fA02 i1="01">
<s0>JSSCBI</s0>
</fA02>
<fA03 i2="1">
<s0>J. solid state chem. : (Print)</s0>
</fA03>
<fA05>
<s2>189</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Solution Processing Technology for Inorganic Films, Nanostructures and Functional Materials, Symposium JJ, 6th International Conference on Materials for Advanced Technologies, 26 June to 1 July 2011, Singapore</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>AKHAVAN (Vahid A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GOODFELLOW (Brian W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PANTHANI (Matthew G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>STEINHAGEN (Chet)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HARVEY (Taylor B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STOLLE (C. Jackson)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KORGEL (Brian A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GOH (Gregory)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>EHRENTRAUT (Dirk)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin</s1>
<s2>Austin, TX 78712-1062</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>2-12</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14677</s2>
<s5>354000509892360010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>63 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0241287</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solid state chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This review article summarizes our research focused on Cu(In
<sub>1</sub>
-
<sub>x</sub>
Ga
<sub>x</sub>
)Se
<sub>2</sub>
(CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS PV layers are typically made using a high temperature ( > 450 ) process in which Cu, In and Ga are sequentially or co-evaporated and selenized. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 3.1% power conversion efficiency under AM 1.5 solar illumination. Although the device efficiency is too low for commercialization, these devices provide a proof-of-concept that solution-deposited CIGS nanocrystal films can function in PV devices, enabling unconventional device architectures and materials combinations, including the use of flexible, inexpensive and light-weight plastic substrates.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70B40</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15R</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet photovoltaïque</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photovoltaic effects</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Article synthèse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Reviews</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Implémentation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Implementation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matière active</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Active material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Materia activa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Stoechiométrie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Stoichiometry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Traitement matériau</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Material processing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Tratamiento material</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépôt projection</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Spray coatings</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Conversion fréquence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Frequency conversion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Conversión frecuencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Cristal colloïdal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Colloidal crystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Américium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Americium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat cuivre</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat plastique</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8115R</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>184</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Materials for Advanced Technologies. Symposium JJ "Solution Processing Technology for Inorganic Films, Nanostructures and Functional Materials"</s1>
<s2>6</s2>
<s3>Singapore SGP</s3>
<s4>2011-06-29</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001F28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0241287
   |texte=   Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024